

SECRETARIA DE ESTADO DE SAÚDE DE MINAS GERAIS **COES MINAS COVID-19**

Nº 21 15/06/2021

Governador do Estado de Minas Gerais

Romeu Zema Neto

Secretário de Estado de Saúde de Minas Gerais

Fábio Baccheretti Vitor

Secretário de Estado Adjunto

André Luiz Moreira dos Anjos

Chefia de Gabinete

Luiza Hermeto Coutinho Campos

Assessoria de Comunicação Social

Antônio Cotta

Subsecretaria de Políticas e Ações de Saúde

Naila Marcela Nery Ferrari

Subsecretaria de Regulação do Acesso a Serviços e Insumos de Saúde

Juliana Ávila Teixeira

Subsecretaria de Inovação e Logística em Saúde

André de Andrade Ranieri

Subsecretaria de Gestão Regional

Darlan Venâncio Thomaz Pereira

Subsecretaria de Vigilância em Saúde

Janaína Passos de Paula

Organização

Coordenação Estadual de Laboratórios e Pesquisa em Vigilância/SUBVS e Sala de Situação /SUBVS

Apresentação

Este boletim tem como objetivo descrever os aspectos epidemiológicos e assistenciais relacionados aos casos de COVID-19 no estado de Minas Gerais e orientar as ações de vigilância, prevenção e controle.

Na última década a avaliação genômica desempenhou um papel fundamental na gestão de doenças infecciosas apoiando o desenvolvimento de novas ferramentas de diagnóstico, novos medicamentos e vacinas¹.

Desde o início da pandemia causada pela COVID-19, milhares de variantes estão em circulação no mundo e é esperado que novas variantes continuem surgindo. Até janeiro de 2021, foram compartilhadas mais de 280.000 sequencias genéticas completas do SARS-CoV-2. As análises genômicas são capazes de estimar aspectos da dinâmica das doenças virais que não são possíveis utilizando-se apenas dados epidemiológicos. Por isso, são uma ferramenta importante para auxiliar na elaboração das políticas de saúde pública, ainda mais no contexto da pandemia de COVID-19 em que estas análises estão sendo realizadas rapidamente por diversos grupos ao redor do mundo².

De acordo com o Guia de Sequenciamento Genômico de SARS-CoV-2¹ da Organização Mundial da Saúde, as análises de sequenciamento têm impacto na saúde pública uma vez que permitem:

- 1. Compreender o surgimento do SARS-CoV-2;
- 2. Compreender a biologia do SARS-CoV-2;
- 3. Melhorar as ferramentas diagnósticas e terapêuticas;
- 4. Investigar a transmissão e disseminação do vírus;
- 5. Inferir parâmetros epidemiológicos

O Ministério da Saúde, através da Secretaria de Vigilância em Saúde, elaborou o Guia Vigilância Genômica do vírus SARS-CoV-2 no âmbito da SVS/MS³ para fortalecimento das ações de vigilância, sendo um dos objetivos específicos "Avaliar e propor estratégia de formação da vigilância em saúde do Sistema Único de Saúde (SUS) sobre vigilância genômica."

¹ Genomic sequencing of SARS-CoV-2: a guide to implementation for maximum impact on public health. Geneva: World Health Organization; 2021. Licence: CC BY-NC-SA 3.0 IGO. Disponível em: https://www.who.int/publications/i/item/9789240018440

² SARS-CoV-2 genomic sequencing for public health goals. Interim guidance. World Health Organization;2021.

³ Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Vigilância genômica do vírus SARS-CoV-2 no âmbito da SVS/MS [recurso eletrônico] / Ministério da Saúde, Secretaria de Vigilância em Saúde. – Brasília: Ministério da Saúde, 2021.

TAXONOMIA DO SARS-CoV-2

O SARS-CoV-2 é um vírus relacionado à síndrome respiratória aguda, pertencente ao gênero *Betacoronavirus*, subgênero *Sarbecovirus* e espécie *Severe acute respiratory syndrome-related coronavirus*. Sua classificação pelo Comitê Internacional de Taxonomia Viral (ICTV), levou em consideração, principalmente, as características moleculares e filogenéticas desses vírus e não a doença causada por ele⁴.

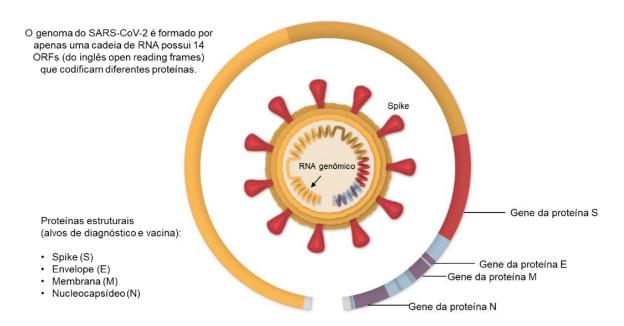


Figura 1: Estrutura genômica do vírus SARS-CoV-2

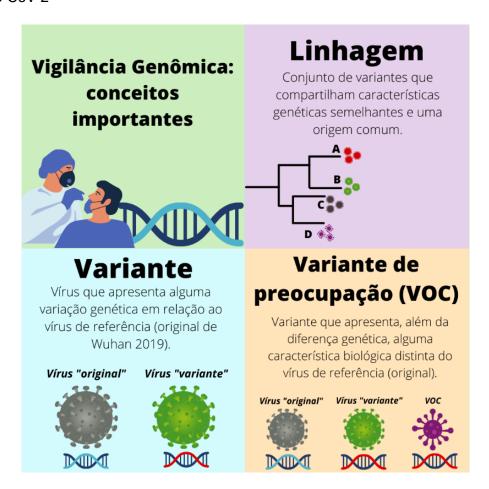
Fonte: Adaptado de The New York Times, Coronavirus variantes e mutações. Disponível em: https://www.nytimes.com/interactive/2021/health/coronavirus-variant-tracker.html

O SARS-CoV-2 é um vírus de RNA e cada nova mudança genética no vírus (mutação) resulta em uma variante. O surgimento de mutações é um evento natural e esperado dentro do processo evolutivo dos vírus. Por causa desta diversidade, a espécie SARS-CoV-2 é classificada em diferentes grupos genéticos ou linhagens, sendo que cada uma delas é composta por inúmeras variantes.

⁴ International Committee on Taxonomy of Viruses (ICTV), 2021. Disponível em https://talk.ictvonline.org/taxonomy. Epidemiological Update: Occurrence of variants of SARS-CoV-2 in the Americas - 20 January 2021. Brasilia, D.F.: Organização Pan-Americana da Saúde; 2021.

A presença de algumas mutações específicas define as linhagens, apresentadas na **Tabela 1**.

Grupo Genético		Mutações de referência do grupo genético		
S	A	C8782T, T28144C, NS8-L84S	E484K K417N N501Y S477N	
L	В	C241, C3037, A23403, C8782, G11083, G25563, G26144, T28144, G28882	E484K K417N N501Y S477N	
V	B.2	G11083T, G26144T, NSP6-L37F, NS3-G251V	E484K K417N N501Y S477N	
G	B.1	C241T, C3037T, A23403G, S-D614G	N501S E484Q T478I S477G N439K A475V F456L F490S S477R S477I S477N S494A N501Y V445I E484K T478K S494P	
GH	B.1*	C241T, C3037T, A23403G, G25563T, S -D614G + NS3-Q57H	N501T K417N Y453F N501Y E484K E484D N439K S494P S477R G446V S477N	
GR	B.1.1.1	C241T, C3037T, A23403G, G28882A, S-D614G + N-G204R	Q493R F490Y Y453F S477G A475V F490S G446V S477R S477I S477N G502V K417T N501Y G446S G447V E484K K458N T478K S494P	
GV	B.1.177	C241T, C3037T, A23403G, C22227T, S-D614G + S-A222V	N501S E484Q T478I S477G N439K A475V F456L F490S S477R S477I S477N S494A N501Y V445I E484K T478K S494P	


Tabela 1 - Mutações que definem os grupos genéticos do SARS-CoV-2

Fonte: GISAID. Disponível em: https://platform.gisaid.org. Atualizado em 22 de janeiro de 2021. Alterações na glicoproteína S (espícula) para os 14.399 novos genomas completos). Acessado em 25 de janeiro de 2021.

O surgimento de mutações adicionais, natural no processo evolutivo do vírus, pode gerar diferenças dentro dessas linhagens, dando origem à sub-linhagens e variantes. Uma variante surge de um "erro" durante o processo de infecção, onde o vírus se multiplica ativamente. Ao gerar novas cópias, o vírus comete erros no processo, dando origem às variantes. A seguir são apresentados alguns conceitos fundamentais para entender um pouco mais sobre os achados laboratoriais da vigilância genômica.

Nº 21 15/06/2021

Figura 2 - Conceitos importantes para entendimento da Vigilância Genômica do SARS-CoV-2

LINHAGENS E VARIANTES DE PREOCUPAÇÃO MUNDIAL E VARIANTES DE INTERESSE LOCAL

Desde o surgimento da COVID-19 na China, milhares de variantes do vírus SARS-CoV-2 foram identificadas, sendo que a maioria das mutações do SARS-CoV-2 não tem impacto epidemiológico significativo, ou seja, não interferem na disseminação e gravidade da doença. Entretanto, nos casos em que as mutações acarretam em alterações que fornecem ao vírus vantagens seletivas como maior transmissibilidade, maior virulência e/ou mecanismos para escapar do sistema imunológico do hospedeiro

as variantes resultantes dessas mutações são chamadas de Variantes de atenção (do inglês, *variant of concern - VOCs*).

Figura 3 - Países de origem das variantes de preocupação e interesse do SARS-CoV-2.

As variantes de atenção (VOC) são consideradas preocupantes devido às mutações que podem conduzir ao aumento da transmissibilidade e ao agravamento da situação epidemiológica nas áreas onde forem identificadas. Desta forma, a vigilância de síndromes respiratórias, com especial atenção para a vigilância genômica, é importante para a saúde pública no enfrentamento da COVID-19. No Quadro abaixo são apresentadas as nomenclaturas e o risco relacionado a cada VOC.

^{*} Variante notificada primeiramente na Nigéria e no Reino Unido

Quadro 1 – Características das variantes de atenção do SARS-CoV-2

Nomenclatura OMS	Linhagem	Mutações	País de Origem	Risco
ALFA	B.1.1.7	23 substituições de nucleotídeos	Reino Unido	De acordo com a OMS, a caracterização da VOC 202012/01 foi responsável por um aumento significativo da transmissibilidade, que contribuiu para aumentos na incidência, hospitalizações e pressão sobre o sistema de saúde.
ВЕТА	B.1.351	Alteração de vários aminoácidos, sendo três das alterações localizadas no domínio de ligação ao receptor (RBD) (alteração de aminoácidos K417N, E484K e N501Y).	África do Sul	Os resultados preliminares indicam que esta variante também pode apresentar maior potencial de transmissibilidade.
GAMA	P.1	Essa variante possui 12 mutações na proteína espícula (<i>spike</i>), incluindo três mutações de interesse em comum com a variante 501Y.V2 (K417N, E484K e N501Y) localizadas no domínio de ligação ao receptor (RBD).	Brasil (Manaus)	As mutações presentes em P.1 podem afetar a transmissibilidade e a resposta imune do hospedeiro. Tendo em vista o aumento rápido e expressivo do número de casos e óbitos pela doença em Manaus, a partir de dezembro de 2020, há uma hipótese de que isso esteja relacionado com uma maior infectividade dessa variante.
DELTA	B.1.617.2	Inclui várias mutações presentes em outros VOIs/VOCs. Possui múltiplas mutações na proteína <i>spike</i> , incluindo L452R, T478K, D614G e P681R.	Índia	Esta é uma variante de preocupação, pois possui evidências de escape imunológico, podendo afetar a neutralização por alguns anticorpos policlonais e monoclonais. Além disso, a mutação L452R foi identificada anteriormente em outra variante de interesse (B.1.427 / B.1.429) que tem sido associada ao aumento da transmissibilidade.

Fonte: Adaptado de Organização Mundial da Saúde, Rastreamento de variantes SARS-CoV-2. Disponível em: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/

No Brasil, de acordo com os dados da Rede Genômica da Fiocruz e da Plataforma GISAID, as principais linhagens/variantes encontradas são a P.1 e P.2, originadas no Brasil, além das linhagens iniciais B.1.1.28 e B.1.1.33 (Figura 4).

8.1.1

8.1.1.28

8.1.1.33

Outras

P.1

P.2

Atualizado em 05/04/2021

Figura 4 - Principais linhagens/variantes do SARS-CoV-2 encontradas no Brasil

Fonte: Fundação Oswaldo Cruz, Rede Genômica Fiocruz. Atualizado em 05/04/2021. Disponível em: http://www.genomahcov.fiocruz.br/principais-linhagens-do-sars-cov-2-encontradas-no-brasil/

TÉCNICAS MOLECULARES PARA VIGILÂNCIA GENÔMICA

A genotipagem é uma ferramenta essencial para monitorar os padrões evolutivos e de dispersão do SARS-CoV-2, através da identificação de novas variantes que possam impactar na capacidade de transmissão do vírus, na evolução clínica da doença e na eficácia das vacinas. Várias estratégias laboratoriais podem ser aplicadas para a genotipagem do SARS-Cov-2 como as técnicas de sequenciamento Sanger e de nova geração (NGS), e a genotipagem por RT-PCR em tempo real.

A técnica de sequenciamento permite determinar a sequência exata que os nucleotídeos (A,T,C,G) se encontram no material genético a ser analisado, como, por exemplo, do SARS-CoV-2 e pode ser realizada por duas metodologias:

1. O sequenciamento de Nova Geração (NGS) é uma técnica que permite avaliar a sequência exata de bilhões de nucleotídeos em uma única reação, o que possibilita o sequenciamento do genoma completo do SARS-CoV-2, com aproximadamente 30.000 nucleotídeos. Esta é a metodologia ideal para a identificação de novas variantes, pois faz uma análise completa do genoma, podendo identificar mutação que venha surgir em qualquer região do material genético do vírus.

2. O sequenciamento Sanger permite a determinação da sequência de nucleotídeos de pequenos fragmentos de material genético de cada vez (cerca de 900 nucleotídeos). Essa técnica tem sido empregada principalmente para o sequenciamento de regiões estratégicas do SARS-Cov-2 como, por exemplo, a sequência que codifica a proteína *spike*, onde as principais mutações das variantes de atenção são encontradas.

A genotipagem por RT-PCR em tempo real permite a avaliação de variantes virais descritas anteriormente, por meio da identificação de mutações que compõe essa variante, através de sondas fluorescentes específicas para a mutação de interesse. Essa técnica não permite a identificação de novas variantes, mas é uma estratégia eficaz para o monitoramento da frequência de variantes conhecidas, uma vez que permite a análise de um número maior de amostras em curto período de tempo e com menor custo.

VIGILÂNCIA GENÔMICA EM MINAS GERAIS

Em dezembro de 2020, a Organização Mundial da Saúde (OMS) reconheceu a existência das variantes de atenção do coronavírus e recomendou a vigilância mundial. Dessa forma, o fluxo de sequenciamento de amostras pela rede pública do estado de Minas Gerais iniciou-se com o projeto "Estruturação da Rede Nacional de Sequenciamento Genético para a Vigilância em Saúde" do Ministério da Saúde para sequenciamento de amostras em todos os estados do Brasil.

Seguindo Nota Técnica nº 5/SES/SUBVS-CELP/2021, em Minas Gerais, os municípios encaminham solicitação de sequenciamento de amostras com resultado positivo

(Detectável) para presença do vírus SARS-CoV-2 pela técnica de RT-PCR, para a vigilância em saúde da SES-MG para avaliação de alguns critérios epidemiológicos:

- Mudança no perfil epidemiológico da doença, como aumento de óbitos e internados;
- ✓ Casos de pacientes que estiveram em locais de circulação de novas variantes;
- ✓ Casos com suspeita de reinfecção;
- ✓ Casos confirmados de SIM-P; e
- ✓ Locais com ocorrência de surtos;

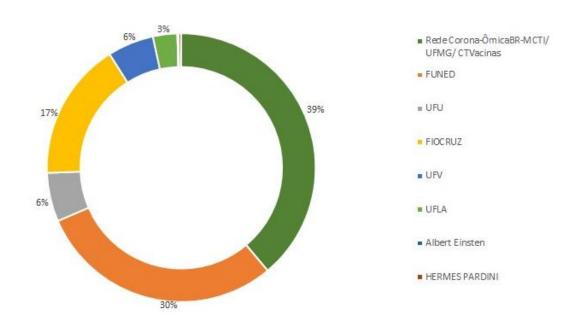
Após avaliação dos critérios epidemiológicos de seleção das amostras e análise da viabilidade técnica (Ct < 30, quantidade suficiente de amostra para sequenciamento e amostras armazenadas em temperatura menor ou igual a -20°C), as amostras são encaminhadas para o Serviço de Virologia e Riquetsioses do Laboratório Central de Saúde Pública (LACEN-MG), localizado na Fundação Ezequiel Dias (FUNED) para análise final da viabilidade das amostras e realização do sequenciamento genético das mesmas (**Figura 5**).

Figura 5 - Fluxo da vigilância genômica do SARS-CoV-2 em Minas Gerais

Após análise laboratorial, os dados genéticos gerados são analisados junto aos especialistas em bioinformática do Ministério da Saúde. A partir das inferências filogenéticas realizadas, o relatório técnico contendo o resultado da interpretação dos

dados genéticos é encaminhado à vigilância em saúde estadual. As Unidades Regionais de Saúde (URS) notificam a vigilância epidemiológica dos respectivos municípios de residência dos casos em que foram detectadas variantes/linhagens do coronavírus, através de um ofício encaminhando os dados e esclarecendo sobre o achado laboratorial.

Para os casos confirmados com **VOC** ou variante de interesse P.2, além da notificação a vigilância epidemiológica municipal, a vigilância em saúde estadual, por meio do Centro de Informações Estratégicas em Vigilância em Saúde (CIEVS), solicita a investigação epidemiológica do respectivo caso (desfecho, deslocamentos para outros municípios e contatos próximos) e a descrição das medidas adotadas em relação aos contatos do paciente.


Além do fluxo da vigilância genômica realizada pelo LACEN-MG, a Subsecretaria de Vigilância em Saúde solicita célere e prioritária notificação por parte dos laboratórios públicos, laboratórios privados, universidades, faculdades e pesquisas em geral, que realizem a genotipagem de amostras de pacientes com resultado detectável para SARS-CoV-2. Após a identificação de linhagens e/ou variantes do SARS-CoV-2, a notificação deve ser realizada pelo laboratório responsável pela análise em até 24 horas, por meio do envio de um relatório técnico contendo o descritivo dos achados para o CIEVS-Minas (nofica.se@saude.mg.gov.br) com cópia para a Coordenação Estadual de Laboratórios e Pesquisa em Vigilância - CELP (celp@saude.mg.gov.br). Os dados notificados são incluídos no Painel de Monitoramento de casos da SES-MG, acessado através do link: https://coronavirus.saude.mg.gov.br/painel-demonitoramento-dos-casos.

ANÁLISE EPIDEMIOLÓGICAS DAS AMOSTRAS GENOTIPADAS NOTIFICADAS À VIGILÂNCIA EM SAÚDE DA SES-MG

Para apresentação deste boletim epidemiológico foram considerados os dados notificados à SES-MG entre março de 2020 até o dia 19 de maio de 2021. Foram encaminhados 24 relatórios referente às análises genéticas realizadas pelo LACEN-MG/FUNED, Fundação Oswaldo Cruz (FIOCRUZ-RJ), Rede Corona-ÔmicaBR-MCTI, Universidade Federal de Minas Gerais (UFMG), Centro de Tecnologia de Vacinas (CT-Vacinas), Universidade Federal de Uberlândia (UFU), Universidade Federal de Viçosa (UFV), Universidade Federal de Lavras (UFLA), Laboratório Hermes Pardini e

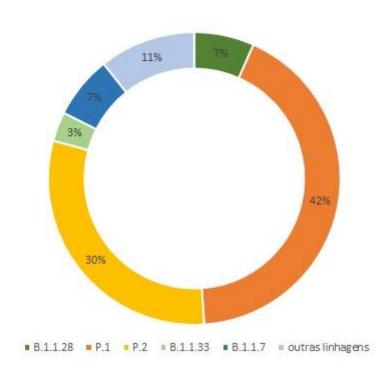

Laboratório Albert Einsten. No total, foram analisadas 669 amostras sequenciadas ou genotipadas por RT-qPCR (**Gráfico 2**).

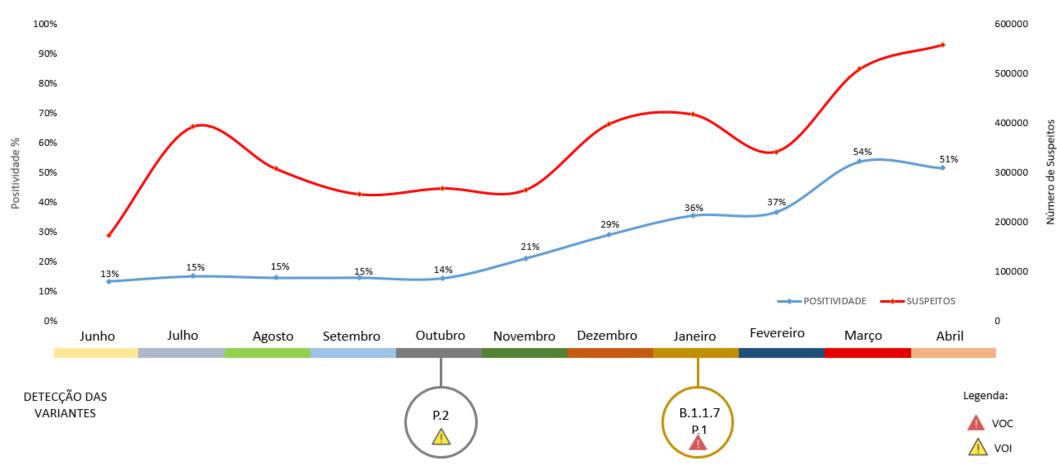
Gráfico 2 – Proporção de amostras genotipadas em Minas Gerais, notificadas à Secretaria de Estado de Saúde de Minas Gerais, por laboratório de análise.

A partir da genotipagem realizada pelas diferentes instituições, foi identificado em Minas Gerais, um total de 19 variantes/linhagens do SARS-CoV-2. Algumas destas circulam em todo o Brasil desde o início da pandemia (B.1.1.28 e B.1.1.33) e outras são variantes de preocupação ou interesse (B.1.1.7, P.1 e P.2) que surgiram a partir das mutações no vírus. A proporção de detecção destas variantes está representada no gráfico abaixo.

Gráfico 3 - Proporção de linhagens/variantes notificadas à Secretaria de Estado de Saúde de Minas Gerais

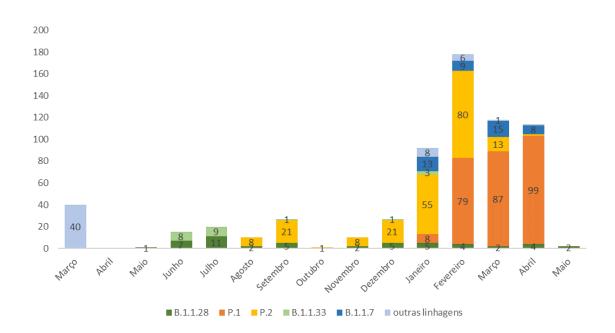
As variantes de interesse e de atenção foram identificadas em outubro de 2020 (P.2) e janeiro de 2021 (B.1.1.7 e P.1), respectivamente. O **Gráfico 4**, demonstra o número de casos suspeitos da COVID-19, por mês de notificação, e a positividade total dos testes moleculares e testes rápidos para detecção de antígeno usados na rede pública e privada.

A partir da identificação da variante P.2 no estado, no mês de outubro de 2020, observa-se um aumento nos indicadores epidemiológicos no mês seguinte (novembro). O mesmo perfil é observado a partir da identificação das variantes P.1 e B.1.1.7, onde se observou um aumento de 14% na positividade dos testes entre os meses de fevereiro e abril de 2021. Apesar da variante P.1 ter sido identificada no mês



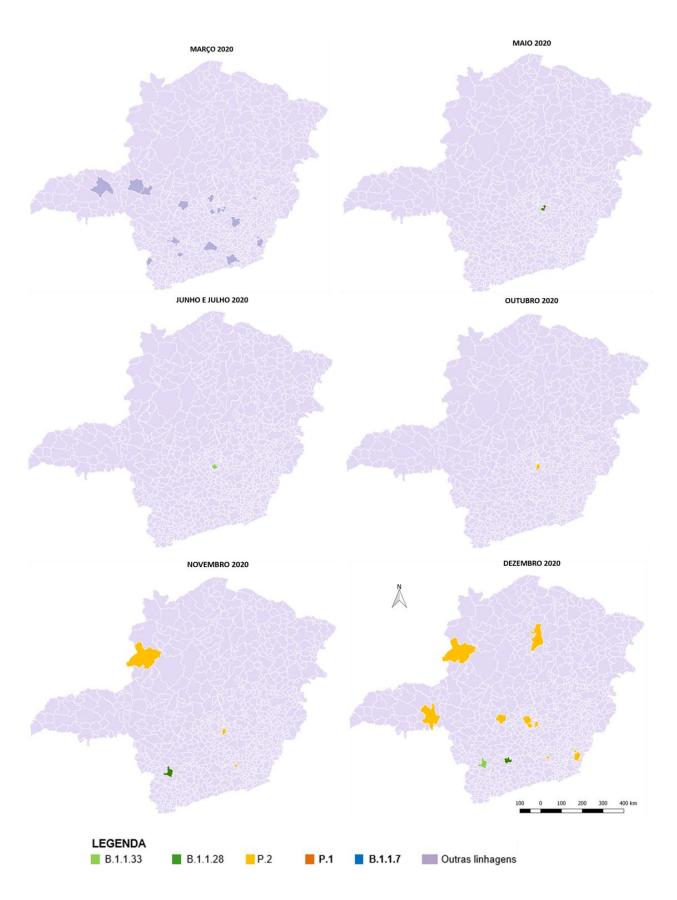
de janeiro de 2021, nos pacientes provenientes do Amazonas que foram internados em Uberaba, acredita-se que a circulação da variante no estado ocorreu no mês de fevereiro, sendo possível explicar a alteração nos indicadores.

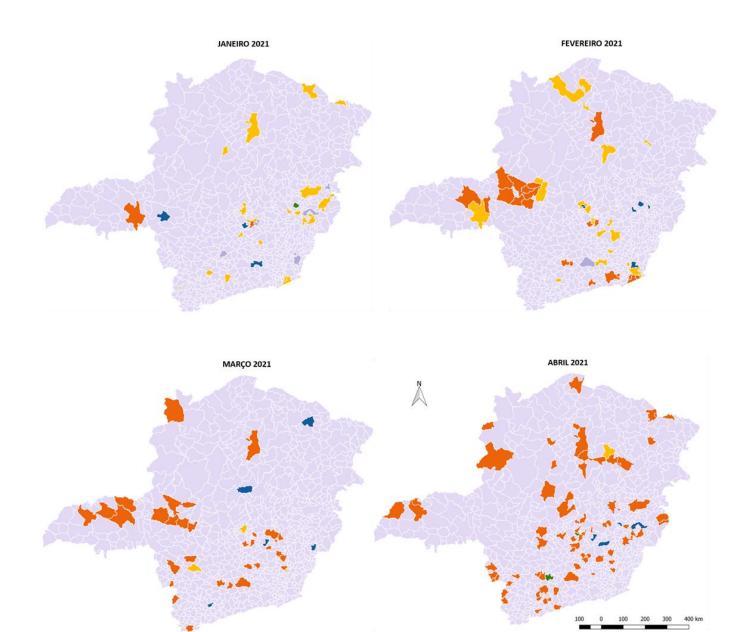
Gráfico 4 – Indicadores epidemiológicos e variantes de atenção/interesse detectadas em Minas Gerais, por mês de coleta da amostra



Fonte: Gerenciador de Ambiente Laboratorial – GAL/Funed (atualizado em 20/05/2021), Sistema E-SUS VE e notificações realizadas pelos laboratórios privados, drogarias, farmácias, serviços de saúde e empresas privadas (atualizado em 17/05/2021). Dados sujeitos a atualização.

Nº 20 15/06/2021


O **Gráfico 5** apresenta o número de amostras genotipadas de acordo com o mês de coleta, sendo que, o maior número de amostras foi coletado no período entre janeiro e abril de 2021, período em que foram detectadas, em Minas Gerais, as variantes de atenção P.1 e B.1.1.7.


Gráfico 5 - Número de amostras genotipadas e notificadas à Secretaria de Estado de Saúde de Minas Gerais, por mês de coleta

A distribuição espacial das variantes/linhagens, de acordo com o mês de coleta da amostra genotipada é demonstrada na **Figura 6.** Observa-se que nos meses seguintes à introdução da variante P.2 na Macrorregião Centro em outubro houve ampliação das áreas com a circulação da variante, perfil esperado considerando a característica de maior transmissibilidade desta variante. Entretanto, a partir da introdução da variante P.1 observa-se predomínio desta variante nas regiões do estado.

Figura 6 - Distribuição espacial das linhagens/variantes notificadas à Secretaria de Estado de Saúde de Minas Gerais de acordo com a data de coleta da amostra.

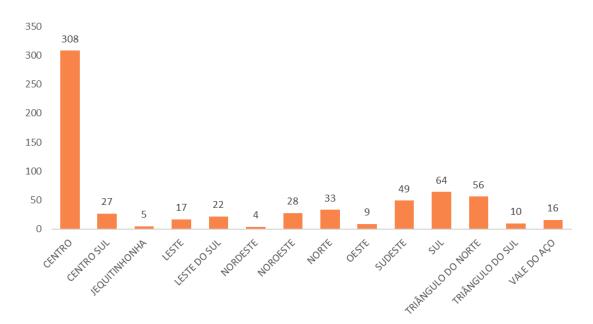
LEGENDA B.1.1.33

■ B.1.1.28

P.2

P.1

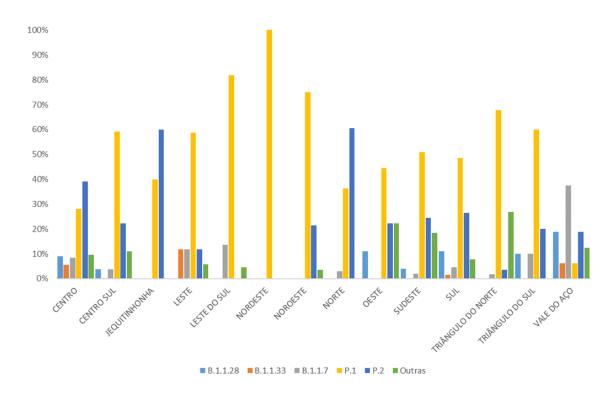
B.1.1.7


Outras linhagens

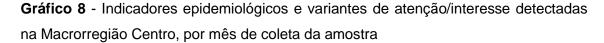
Nº 20 15/06/2021

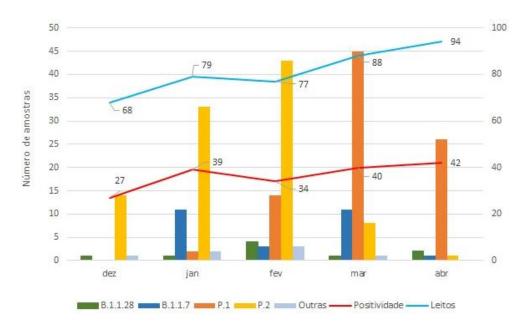
Análise por Macrorregião

O número total de amostras genotipadas em cada macrorregião, está representada no **Gráfico 6**, pode-se observar que a Macrorregião Centro foi a região que apresentou o maior número de amostras genotipadas (308), sendo também a região que detém a maior densidade populacional do estado representada pela região metropolitana. As outras Macrorregiões com maior número de amostras analisadas foram a Sul (64 amostras analisadas), Triângulo Norte (56) e Sudeste (49). Em contrapartida, faz-se necessário o incremento de amostragem nas Macrorregiões Nordeste (4), Jequitinhonha (5), Oeste (9) e Triângulo Sul (10).

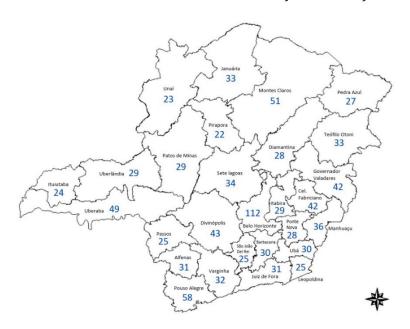

Gráfico 6 - Número de amostras genotipadas por Macrorregião de Saúde

A proporção das principais variantes detectadas por Macrorregião pode ser consultada no **Gráfico 7**. De acordo com os dados apresentados no gráfico, podemos observar a identificação da **VOC P.1** em todas as macrorregiões do estado de Minas Gerais. Enquanto a **VOC B.1.1.7** apresenta um perfil diferenciado, a qual foi identificada em menor proporção na amostragem realizada em 10 macrorregiões (Centro, Centro-sul, Leste, Leste do Sul, Vale do Aço, Sudeste, Sul, Triângulo do Sul, Triângulo Norte e Norte de Minas Gerais).


Nº 20 15/06/2021

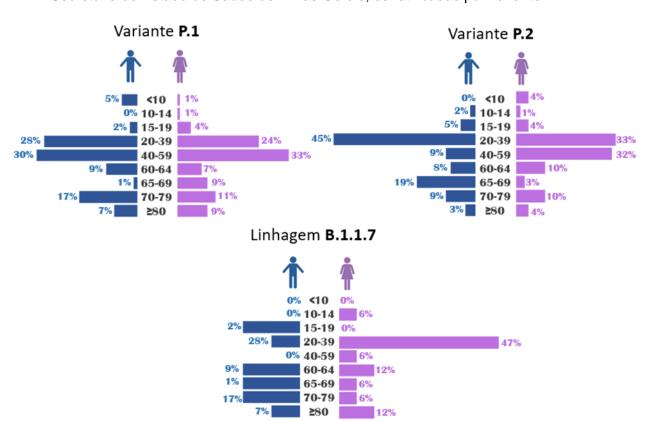


Em determinadas macrorregiões, foi possível identificar, até o momento, uma diversidade de ao menos quatro linhagens/variantes circulantes (Centro, Centro-sul, Leste, Oeste, Sudeste, Sul, Triângulo Norte, Triângulo Sul e Vale do Aço).


Considerando o número de amostras já analisadas na Macrorregião Centro, foi realizada uma comparação entre a circulação das variantes e os indicadores epidemiológicos de positividade e taxa de ocupação de leitos. Observa-se as variantes de atenção P.1 e B.1.1.7 e a variante de interesse P.2 tem impacto em ambos os indicadores, sendo que nos meses de março e abril, onde há predomínio da variante P.1, a taxa de ocupação de leitos apresentou aumento de 17% quando comparado ao mês de fevereiro.

Projeto da Universidade Federal de Minas Gerais, em parceria com a SES-MG, LACEN-MG/FUNED, UFV e prefeitura de Belo Horizonte, está sendo desenvolvido com objetivo de avaliar a frequência das variantes em circulação em Minas Gerais nos meses de março e abril de 2021. Para tanto, serão analisadas 1000 amostras representativas de todas as Unidades Regionais de Saúde para mapeamento das variantes em circulação no período (**Figura 7**).

Figura 7 – Número de amostras representativas de cada Unidade Regional de Saúde para mapeamento das variantes de SARS-CoV-2 em circulação em março de 2021.

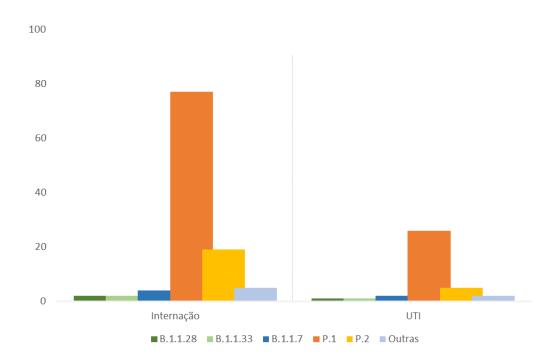


Nº 20 15/06/2021

Análise das características demográficas e clínicas

A mediana de idade entre os pacientes foi de 51, 44 e 61 anos para as variantes P.1, P.2 e B.1.1.7, respectivamente. Os pacientes em que as amostras de P.1 foram identificadas tinham entre dois meses e 90 anos, sendo que a maior parte estava na faixa etária entre 20 a 59 anos, em ambos os sexos. Já os pacientes em que a variante B.1.1.7 foi identificada, a idade variou de 11 a 98 anos, sendo a faixa etária mais frequente a de 20 a 39 anos com predomínio de mulheres.

Figura 8 - Pirâmide etária dos indivíduos com amostras genotipadas notificadas à Secretaria de Estado de Saúde de Minas Gerais, estratificadas por variante

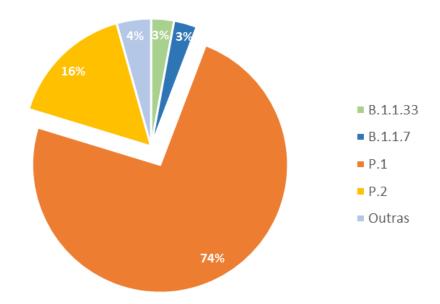

As variáveis clínicas foram obtidas através do cruzamento das informações dos pacientes (nome e data de nascimento) com os bancos de casos notificados nos sistemas oficiais E-SUS e SIVEP Gripe. Das 669 notificações, apenas 52% (350) retornaram resultados.

Nº 20 15/06/2021

<u>Internação</u>

Dentre os pacientes com informações clínicas, 31% (109) necessitaram de internação e 10% (37) de unidade de terapia intensiva (UTI). A variante mais frequente dentro destes grupos foi a P.1, seguida da P.2 (**Figura 9**). A proporção de internação entre os pacientes com a variante P.1 foi significativamente maior em relação as demais variantes (p<0.05). O uso de leitos de unidade de terapia intensiva não mostrou diferença significativa entre a variante P.1 e as demais (p=0.1606).

Figura 9 - Frequência de linhagens/variantes notificadas à Secretaria de Estado de Saúde de Minas Gerais entre os pacientes com informação de internação.



Evolução clínica

Apenas 51% (180) das notificações tinham informação sobre a evolução clínica dos pacientes. Destas, 69 foram classificadas com o desfecho "Óbito" e 111 como "recuperados". Entre o grupo com desfecho fatal, a variante P.1 foi a mais frequente

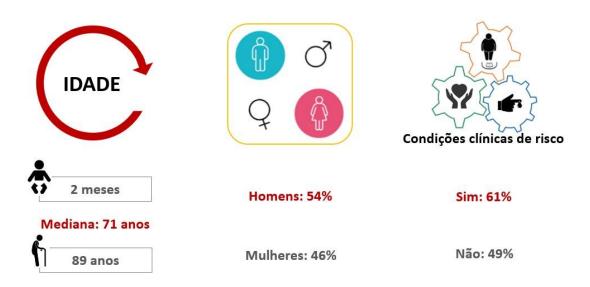

(**Figura 10**), apresentando diferença significativa em relação as demais linhagens/variantes (p<0.05).

Figura 10 - Proporção de linhagens/variantes notificadas à SES-MG entre os pacientes com desfecho clínico classificado como "óbito".

Os pacientes com desfecho fatal em que a variante P.1 foi identificada (51) tinham entre dois meses e 89 anos, com média de 74 anos. Houve diferença de idade entre os pacientes que evoluíram para óbito em relação aos pacientes recuperados com a variante P.1 identificada (média 49 anos). Não houve diferença entre sexo e presença de condições clínicas de risco no grupo com evolução classificada como "óbito" e "recuperado".

Figura 11 - Características dos pacientes com desfecho clínico classificado como "óbito" em que as amostras foram identificadas como variante P.1 e notificadas à Secretaria de Estado de Saúde de Minas Gerais

